
1 Introduction

The LPV-PBSIDopt algorithm as implemented in the LPVcore function ”lpvpbsidopt” differs
in the originating paper [1] on a few features. In this document, these differences are explained,
and the additional notation is introduced that is used in the script.

2 Separate basis functions

Separate basis functions for each of the open-loop system matrices (A, B, C, D, and K) are
supported. Since the derivation in the paper does not consider this scenario, the model equations
(1) and (2) are rewritten as follows:

xk+1 =

mA∑
i=1

µ
(i)
A,kA

(i)xk +

mB∑
i=1

µ
(i)
B,kB

(i)uk +

mK∑
i=1

µ
(i)
K,kK

(i)ek

yk =

mC∑
i=1

µ
(i)
C,kC

(i)xk +

mD∑
i=1

µ
(i)
D,kD

(i)uk + ek

(1)

Similarly, the basis functions for the closed-loop system matrices Ã and B̃ are represented by µÃ,k

and µB̃,k, respectively, with the number of basis functions in each denoted by mÃ and mB̃ .

For simplicity, the closed-loop input matrix B̆ =
[
B̃ K

]
is expanded in terms of basis functions

of B̃ only, i.e., the sparsity which arises from the fact that the mK ≤ mB̃ is not exploited.
To keep the dimensions of the matrices used in the algorithm compatible, the definition of q̃ as

introduced in Definition 4 is generalized for the case mB̃ 6= mÃ:

q̃ = (r + `)

p∑
j=1

mj−1

Ã
mB̃ (2)

Finally, Definition 5 is also generalized:

Pp|k = µÃ,k+p−1 ⊗ · · · ⊗ µÃ,k+1 ⊗ µB̃,k ⊗ Ir+` (3)

3 Parameter-dependent output equation

A parameter-dependent output equation is supported (as was seen in the previous section). To this
end, the time-varying input-output transition matrix H̄p

k is introduced. It maps past inputs from
time steps k to k + p− 1 to output at time step k + p under the assumption that the past window
p is sufficiently large so that the initial state k time steps ago has no influence:

H̄p
k =

[
Ck+pφp−1,k+1B̆k, · · · , Ck+pφ1,k+p−1B̆k+p−2, Ck+pB̆k+p−1

]
. (4)

Note H̄p
k = Ck+pK̄p

k.
In order to decompose H̄p

k into a constant and parameter-dependent part, the following matrices
are introduced:

Ij =
[
C(1)Lj , · · · , C(mC)Lj

]
, (5)

1

and
Hp =

[
Ip, Ip−1, · · · , I1

]
∈ R`×mC q̃. (6)

Note that Hp has m times as many columns as Kp. The relation between Hp and C(1)Kp is given
as follows:

C(1)Kp = Hp blkdiag
(
J

(p)
Hp , . . . , J

(1)
Hp

)
︸ ︷︷ ︸

JHp

= HpJHp , (7)

with

J
(i)
Hp =

[
1

0(mC−1)×1

]
⊗ Imi−1

Ã
mB̃(r+`) (8)

Finally, the following extensions to Pp|k and Np
k are needed:

Qp|k = µC,k+p ⊗ µÃ,k+p−1 ⊗ · · · ⊗ µÃ,k+1 ⊗ µB̃,k ⊗ Ir+`︸ ︷︷ ︸
Pp|k

∈ RmCm
(p−1)

Ã
mB̃(r+`)×(r+`) (9)

Mp
k =


Qp|k 0

Qp−1|k+1

. . .

0 Q1|k+p−1

 ∈ RmC q̃×p(r+`) (10)

Based on the above, the factorization of H̄p
k is obtained as follows:

H̄p
k = HpMp

k (11)

The matrix ZH is introduced as the counter-part to Z in (12):

ZH =
[
Mp

1 z̄
p
1 , . . . , Mp

N−p+1z̄
p
N−p+1

]
(12)

The next change is (13), where the optimization does not occur over CKp, but Hp. Note that CKp

is a special case of Hp for constant C and that Z is replaced by ZH.

min
Hp,D

‖Y −HpZH −DU‖2F (13)

The matrix product ΓpKp (14) can be recovered by extracting CKp (using the notation of the
paper) from the columns of Hp that correspond to the parameter-independent part of C.

3.1 Kernel method

For the kernel method, the parameter-dependent output equation also requires additional defini-
tions. First, Zi,j

H as an extension to Zi,j in (23):

Zi,j
H =

[
Qp−j+1|j−i+1zj−i+1, . . . , Qp−j+1|N̄+j−izN̄+j−i

]
(14)

2

The matrix ΓpKpZ is constructed as follows:

ΓpKpZ =



α

p∑
j=1

(Z1,j
H)TJ

(p−j+1)
Hp Z1,j

α

p∑
j=2

(Z2,j
H)TJ

(p−j+1)
Hp Z1,j

...

α

p∑
j=p

(Zp,j
H)TJ

(p−j+1)
Hp Z1,j


(15)

In order to compute α̂ in (19), the matrix ZT
HZH is needed. With a small modification of Theorem

10, this matrix can be decomposed in terms of Z1,j
H , j = 1, ..., p:

ZT
HZH =

p∑
j=1

(
Z1,j
H

)T

Z1,j
H (16)

References

[1] Jan-Willem van Wingerden and Michel Verhaegen. Subspace identification of Bilinear and LPV
systems for open- and closed-loop data. Automatica, 45(2):372–381, 2009.

3

