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1 Introduction

This document gives derivations of the Linear Matrix Inequalities (LMIs) that are used in order to
perform state-feedback controller synthesis in LPVcore Toolbox using the lpvsynsf command.

2 Problem

Given a generalized plant

ξx = A(p)x+Bw(p)w +Bu(p)u; (1a)

z = Cz(p)x+Dzw(p)w +Dzu(p)u; (1b)

synthesize a state-feedback controller
u = K(p)x, (2)

such that the closed-loop interconnection

ξx =

Acl(p)  
(A(p) +Bu(p)K(p))x+

Bcl(p)  
Bw(p)w; (3a)

z = (Cz(p) +Dzu(p)K(p))  
Ccl(p)

x+Dzw(p)  
Dcl(p)

w; (3b)

satisfies a specific performance metric, such as minimal L2-gain or being passive.

3 Continuous-Time

3.1 L2-gain

From [1, Corollary 2.1], the closed-loop interconnection has a bounded L2-gain of γ if there exists a
positive-definite matrix function M such that




Acl(p)

⊤M(p) + ()⊤ + ∂M(p, v) M(p)Bcl(p) Ccl(p)
⊤

 −γI Dcl(p)
⊤

  −γI



 ≼ 0. (4)

Define M−1(p) = W (p), then

()⊤




Acl(p)

⊤M(p) + ()⊤ + ∂M(p, v) M(p)Bcl(p) Ccl(p)
⊤

 −γI Dcl(p)
⊤

  −γI








M−1(p) 0 0

0 I 0
0 0 I



 ≼ 0, (5)

which gives us 


W (p)Acl(p)

⊤ + ()⊤ − ∂W (p, v) Bcl(p) W (p)Ccl(p)
⊤

 −γI Dcl(p)
⊤

  −γI



 ≼ 0. (6)
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Note that ()⊤(∂M)M−1 = −∂(M−1) = −∂W as 0 = ∂I = ∂(MM−1) = (∂M)M−1 +M(∂(M−1))
[2].

Using (3), we have that

Acl(p)W (p) = A(p)W (p) +Bu(p)K(p)W (p), (7a)

Ccl(p)W (p) = Cz(p)W (p) +Dzu(p)K(p)W (p). (7b)

Let us define
F (p) := K(p)W (p). (8)

Then, defining

Acl(p, v) := Acl(p)W (p)− 1

2
∂W (p, v) = A(p)W (p) +Bu(p)F (p)− 1

2
∂W (p, v), (9a)

Bcl(p) := Bcl(p) = Bw(p), (9b)

Ccl(p) := Ccl(p)W (p) = Cz(p)W (p) +Dzu(p)F (p), (9c)

Dcl(p) := Dcl(p) = Dzw(p), (9d)

we have that (6) becomes




Acl(p, v) + ()⊤ Bcl(p) Ccl(p)

⊤

 −γI Dcl(p)
⊤

  −γI



 ≼ 0. (10)

After solving the set of LMIs defined by (10) for F and W , the controller K can be recovered by
computing (based on (8))

K(p) = F (p)W (p)−1. (11)

3.2 Passivity

From [1, Corollary 2.2], the closed-loop interconnection is passive if there exists a positive-definite
matrix function M such that


Acl(p)

⊤M(p) + ()⊤ + ∂M(p, v) M(p)Bcl(p)− Ccl(p)
⊤

 −Dcl(p) + ()⊤


≼ 0. (12)

Again, define M−1(p) = W (p), then

()⊤

Acl(p)

⊤M(p) + ()⊤ + ∂M(p, v) M(p)Bcl(p)− Ccl(p)
⊤

 −Dcl(p) + ()⊤

 
M(p)−1 0

0 I


≼ 0, (13)

which gives us 
W (p)Acl(p)

⊤ + ()⊤ − ∂W (p, v) Bcl(p)−W (p)Ccl(p)
⊤

 −Dcl(p) + ()⊤


≼ 0. (14)

Using (9), this becomes 
Acl(p, v) + ()⊤ Bcl(p)− Ccl(p)

⊤

 −Dcl(p) + ()⊤


≼ 0. (15)
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3.3 L2-L∞-gain

From [1, Corollary 2.3], the closed-loop interconnection has a bounded L2-L∞-gain of γ if there exists
a positive-definite matrix function M such that


Acl(p)

⊤M(p) + ()⊤ + ∂M(p, v) M(p)Bcl(p)
 −γI


≼ 0,


M(p) Ccl(p)

⊤

 γI


≽ 0. (16)

Again, define M−1(p) = W (p), then

()⊤

Acl(p)

⊤M(p) + ()⊤ + ∂M(p, v) M(p)Bcl(p)
 −γI

 
M(p)−1 0

0 I


≼ 0, (17a)

()⊤

M(p) Ccl(p)

⊤

 γI

 
M(p)−1 0

0 I


≼ 0, (17b)

which gives us


W (p)Acl(p)

⊤ + ()⊤ − ∂W (p, v) Bcl(p)
 −γI


,


W (p) W (p)Ccl(p)

⊤

 γI


≽ 0. (18)

Using (9), this becomes


Acl(p, v) + ()⊤ Bcl(p)

 −γI


,


W (p) Ccl(p)

⊤

 γI


≽ 0. (19)

3.4 L∞-gain

From [1, Corollary 2.4], the closed-loop interconnection has a bounded L∞-gain of γ if there exists a
positive-definite matrix function M and scalars α,β ≥ 0 such that


Acl(p)

⊤M(p) + ()⊤ + βM(p) + ∂M(p, v) M(p)Bcl(p)
 −αI


≼ 0,




βM(p) 0 Ccl(p)

⊤

 (γ − α)I Dcl(p)
⊤

  γI



 ≽ 0.

(20)
Again, define M−1(p) = W (p), then

()⊤

Acl(p)

⊤M(p) + ()⊤ + βM(p) + ∂M(p, v) M(p)Bcl(p)
 −αI

 
M(p)−1 0

0 I


≼ 0, (21a)

()⊤




βM(p) 0 Ccl(p)

⊤

 (γ − α)I Dcl(p)
⊤

  γI








M(p)−1 0 0

0 I 0
0 0 I



 ≼ 0, (21b)

which gives us


W (p)Acl(p)

⊤ + ()⊤ + βW (p)− ∂W (p, v) Bcl(p)
 −αI


,




βW (p) 0 W (p)Ccl(p)

⊤

 (γ − α)I Dcl(p)
⊤

  γI



 ≽ 0.

(22)
Using (9), this becomes


Acl(p, v) + ()⊤ + βW (p) Bcl(p)

 −αI


,




βW (p) 0 Ccl(p)

⊤

 (γ − α)I Dcl(p)
⊤

  γI



 ≽ 0. (23)
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4 Discrete-Time

4.1 ℓ2-gain

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection has a bounded ℓ2-gain of γ (corresponding to (Q,S,R) = (γI, 0,−γ−1I)) if there exists
a positive-definite matrix function M and matrix G such that




M(p+ v) Acl(p)G Bcl(p)

 G+ ()⊤ −M(p) 0
  0



+ ()⊤

γI 0
 γ−1I

 
0 0 I
0 Ccl(p)G Dcl(p)


≽ 0, (24)

which is equivalent to




M(p+ v) Acl(p)G Bcl(p)

 G+ ()⊤ −M(p) 0
  γI



+ ()⊤(γI)−1

0 Ccl(p)G Dcl(p)


≽ 0, (25)

and using a Schur complement to





M(p+ v) Acl(p)G Bcl(p) 0
 G+ ()⊤ −M(p) 0 G⊤Ccl(p)

⊤

  γI Dcl(p)
⊤

   γI



 ≽ 0. (26)

Using (3), we have that
Acl(p)G = A(p)G+Bu(p)K(p)G, (27a)

Ccl(p)W (p) = Cz(p)G+Dzu(p)K(p)G. (27b)

Let us define
F (p) := K(p)G. (28)

Then, defining
Acl(p) := Acl(p)G = A(p)G+Bu(p)F (p), (29a)

Bcl(p) := Bcl(p) = Bw(p), (29b)

Ccl(p) := Ccl(p)G = Cz(p)G(p) +Dzu(p)F (p), (29c)

Dcl(p) := Dcl(p) = Dzw(p), (29d)

we have that (26) becomes





M(p+ v) Acl(p) Bcl(p) 0
 G+ ()⊤ −M(p) 0 Ccl(p)

⊤

  γI Dcl(p)
⊤

   γI



 ≽ 0. (30)

After solving the set of LMIs defined by (10) for F and W , the controller K can be recovered by
computing (based on (28))

K(p) = F (p)G−1. (31)
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4.2 Passivity

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection is passive (corresponding to (Q,S,R) = (0, I, 0)) if there exists a positive-definite
matrix function M and matrix G such that




M(p+ v) Acl(p)G Bcl(p)

 G+ ()⊤ −M(p) 0
  0



+ ()⊤

0 I
 0

 
0 0 I
0 Ccl(p)G Dcl(p)


≽ 0, (32)

which is equivalent to



M(p+ v) Acl(p)G Bcl(p)

 G+ ()⊤ −M(p) G⊤Ccl(p)
⊤

  Dcl(p) + ()⊤



 ≽ 0. (33)

Using (29), this becomes



M(p+ v) Acl(p) Bcl(p)

 G+ ()⊤ −M(p) Ccl(p)
⊤

  Dcl(p) + ()⊤



 ≽ 0. (34)

4.3 ℓ2-ℓ∞-gain

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection has a bounded ℓ2-ℓ∞-gain of γ (corresponding to (Q,S,R) = (γI, 0, 0)) if there exists
a positive-definite matrix function M and matrix G such that




M(p+ v) Acl(p)G Bcl(p)

 G+ ()⊤ −M(p) 0
  0



+ ()⊤

γI 0
 0

 
0 0 I
0 Ccl(p)G Dcl(p)


≽ 0, (35a)

and from [1, (A.202)] 
G+ ()⊤ −M(p) G⊤Ccl(p)

⊤

 γI


≽ 0, (35b)

which is equivalent to



M(p+ v) Acl(p)G Bcl(p)

 G+ ()⊤ −M(p) 0
  γI



 ≽ 0,


G+ ()⊤ −M(p) G⊤Ccl(p)

⊤

 γI


≽ 0. (36)

Using (29), this becomes



M(p+ v) Acl(p) Bcl(p)

 G+ ()⊤ −M(p) 0
  γI



 ≽ 0,


G+ ()⊤ −M(p) Ccl(p)

⊤

 γI


≽ 0. (37)

4.4 ℓ∞-gain

Based on [1, (A.215)], it holds that the closed-loop interconnection has a bounded ℓ∞-gain of γ if
there exists a positive-definite matrix function M and matrix G such that




M(p+ v) Acl(p)G Bcl(p)

 (1− β)(G+ ()⊤ −M(p)) 0
  αI



 ≽ 0, (38a)

and from [1, (A.220)]



β(G+ ()⊤ −M(p)) 0 G⊤Ccl(p)

⊤

 (γ − α)I Dcl(p)
⊤

  γI



 ≽ 0. (38b)
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Using (29), this becomes




M(p+ v) Acl(p) Bcl(p)

 (1− β)(G+ ()⊤ −M(p)) 0
  αI



 ≽ 0, (39a)

and 


β(G+ ()⊤ −M(p)) 0 Ccl(p)

⊤

 (γ − α)I Dcl(p)
⊤

  γI



 ≽ 0. (39b)

Note that the LMIs in (10), (15), (19), (23), (30), (34), (37), and (39) have the same form as the
output-feedback controller synthesis LMIs in Corrolaries 2.5 - 2.8 in [1].
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