LPV State-Feedback LMI Derivations

P.J.W. Koelewijn

June 2, 2023

1 Introduction

This document gives derivations of the Linear Matrix Inequalities (LMIs) that are used in order to perform state-feedback controller synthesis in LPVcore Toolbox using the lpvsynsf command.

2 Problem

Given a generalized plant

$$
\begin{align*}
\xi x & =A(p) x+B_{\mathrm{w}}(p) w+B_{\mathrm{u}}(p) u ; \tag{1a}\\
z & =C_{\mathrm{z}}(p) x+D_{\mathrm{zw}}(p) w+D_{\mathrm{zu}}(p) u ; \tag{1b}
\end{align*}
$$

synthesize a state-feedback controller

$$
\begin{equation*}
u=K(p) x \tag{2}
\end{equation*}
$$

such that the closed-loop interconnection

$$
\begin{align*}
\xi x & =\overbrace{\left(A(p)+B_{\mathrm{u}}(p) K(p)\right)}^{A_{\mathrm{cl}}(p)} x+\overbrace{B_{\mathrm{w}}(p)}^{B_{\mathrm{cl}}(p)} w ; \tag{3a}\\
z & =\underbrace{\left(C_{\mathrm{z}}(p)+D_{\mathrm{zu}}(p) K(p)\right)}_{C_{\mathrm{cl}}(p)} x+\underbrace{D_{\mathrm{zw}}(p)}_{D_{\mathrm{cl}}(p)} w ; \tag{3b}
\end{align*}
$$

satisfies a specific performance metric, such as minimal \mathcal{L}_{2}-gain or being passive.

3 Continuous-Time

$3.1 \quad \mathcal{L}_{2}$-gain

From [1, Corollary 2.1], the closed-loop interconnection has a bounded \mathcal{L}_{2}-gain of γ if there exists a positive-definite matrix function M such that

$$
\left[\begin{array}{ccc}
A_{\mathrm{cl}}(p)^{\top} M(p)+ & (\star)^{\top}+\partial M(p, v) & M(p) B_{\mathrm{cl}}(p) \tag{4}\\
\star & -\gamma I & C_{\mathrm{cl}}(p)^{\top} \\
\star & \star & -\gamma I
\end{array}\right] \preceq 0 .
$$

Define $M^{-1}(p)=W(p)$, then

$$
(\star)^{\top}\left[\begin{array}{ccc}
A_{\mathrm{cl}}(p)^{\top} M(p)+(\star)^{\top}+\partial M(p, v) & M(p) B_{\mathrm{cl}}(p) & C_{\mathrm{cl}}(p)^{\top} \tag{5}\\
\star & -\gamma I & D_{\mathrm{cl}}(p)^{\top} \\
\star & \star & -\gamma I
\end{array}\right]\left[\begin{array}{cccc}
M^{-1}(p) & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right] \preceq 0,
$$

which gives us

$$
\left[\begin{array}{ccc}
W(p) A_{\mathrm{cl}}(p)^{\top}+(\star)^{\top}-\partial W(p, v) & B_{\mathrm{cl}}(p) & W(p) C_{\mathrm{cl}}(p)^{\top} \tag{6}\\
\star & -\gamma I & D_{\mathrm{cl}}(p)^{\top} \\
\star & \star & -\gamma I
\end{array}\right] \preceq 0 .
$$

Note that $(\star)^{\top}(\partial M) M^{-1}=-\partial\left(M^{-1}\right)=-\partial W$ as $0=\partial I=\partial\left(M M^{-1}\right)=(\partial M) M^{-1}+M\left(\partial\left(M^{-1}\right)\right)$ [2].

Using (3), we have that

$$
\begin{gather*}
A_{\mathrm{cl}}(p) W(p)=A(p) W(p)+B_{\mathrm{u}}(p) K(p) W(p), \tag{7a}\\
C_{\mathrm{cl}}(p) W(p)=C_{\mathrm{z}}(p) W(p)+D_{\mathrm{zu}}(p) K(p) W(p) . \tag{7b}
\end{gather*}
$$

Let us define

$$
\begin{equation*}
F(p):=K(p) W(p) . \tag{8}
\end{equation*}
$$

Then, defining

$$
\begin{gather*}
\mathcal{A}_{\mathrm{cl}}(p, v):=A_{\mathrm{cl}}(p) W(p)-\frac{1}{2} \partial W(p, v)=A(p) W(p)+B_{\mathrm{u}}(p) F(p)-\frac{1}{2} \partial W(p, v), \tag{9a}\\
\mathcal{B}_{\mathrm{cl}}(p):=B_{\mathrm{cl}}(p)=B_{\mathrm{w}}(p), \tag{9b}\\
\mathcal{C}_{\mathrm{cl}}(p):=C_{\mathrm{cl}}(p) W(p)=C_{\mathrm{z}}(p) W(p)+D_{\mathrm{zu}}(p) F(p), \tag{9c}\\
\mathcal{D}_{\mathrm{cl}}(p):=D_{\mathrm{cl}}(p)=D_{\mathrm{zw}}(p), \tag{9d}
\end{gather*}
$$

we have that (6) becomes

$$
\left[\begin{array}{ccc}
\mathcal{A}_{\mathrm{cl}}(p, v)+(\star)^{\top} & \mathcal{B}_{\mathrm{cl}}(p) & \mathcal{C}_{\mathrm{cl}}(p)^{\top} \tag{10}\\
\star & -\gamma I & \mathcal{D}_{\mathrm{cl}}(p)^{\top} \\
\star & \star & -\gamma I
\end{array}\right] \preceq 0 .
$$

After solving the set of LMIs defined by (10) for F and W, the controller K can be recovered by computing (based on (8))

$$
\begin{equation*}
K(p)=F(p) W(p)^{-1} . \tag{11}
\end{equation*}
$$

3.2 Passivity

From [1, Corollary 2.2], the closed-loop interconnection is passive if there exists a positive-definite matrix function M such that

$$
\left[\begin{array}{cc}
A_{\mathrm{cl}}(p)^{\top} M(p)+(\star)^{\top}+\partial M(p, v) & M(p) B_{\mathrm{cl}}(p)-C_{\mathrm{cl}}(p)^{\top} \tag{12}\\
\star & -D_{\mathrm{cl}}(p)+(\star)^{\top}
\end{array}\right] \preceq 0 .
$$

Again, define $M^{-1}(p)=W(p)$, then

$$
(\star)^{\top}\left[\begin{array}{cc}
A_{\mathrm{cl}}(p)^{\top} M(p)+(\star)^{\top}+\partial M(p, v) & M(p) B_{\mathrm{cl}}(p)-C_{\mathrm{cl}}(p)^{\top} \tag{13}\\
\star & -D_{\mathrm{cl}}(p)+(\star)^{\top}
\end{array}\right]\left[\begin{array}{cc}
M(p)^{-1} & 0 \\
0 & I
\end{array}\right] \preceq 0,
$$

which gives us

$$
\left[\begin{array}{cc}
W(p) A_{\mathrm{cl}}(p)^{\top}+(\star)^{\top}-\partial W(p, v) & B_{\mathrm{cl}}(p)-W(p) C_{\mathrm{cl}}(p)^{\top} \tag{14}\\
\star & -D_{\mathrm{cl}}(p)+(\star)^{\top}
\end{array}\right] \preceq 0 .
$$

Using (9), this becomes

$$
\left[\begin{array}{cc}
\mathcal{A}_{\mathrm{cl}}(p, v)+(\star)^{\top} & \mathcal{B}_{\mathrm{cl}}(p)-\mathcal{C}_{\mathrm{cl}}(p)^{\top} \tag{15}\\
\star & -\mathcal{D}_{\mathrm{cl}}(p)+(\star)^{\top}
\end{array}\right] \preceq 0 .
$$

$3.3 \quad \mathcal{L}_{2}-\mathcal{L}_{\infty}$-gain

From [1, Corollary 2.3], the closed-loop interconnection has a bounded $\mathcal{L}_{2}-\mathcal{L}_{\infty}$ - gain of γ if there exists a positive-definite matrix function M such that

$$
\left[\begin{array}{cc}
A_{\mathrm{cl}}(p)^{\top} M(p)+(\star)^{\top}+\partial M(p, v) & M(p) B_{\mathrm{cl}}(p) \tag{16}\\
\star & -\gamma I
\end{array}\right] \preceq 0, \quad\left[\begin{array}{cc}
M(p) & C_{\mathrm{cl}}(p)^{\top} \\
\star & \gamma I
\end{array}\right] \succeq 0 .
$$

Again, define $M^{-1}(p)=W(p)$, then

$$
\begin{gather*}
(\star)^{\top}\left[\begin{array}{cc}
A_{\mathrm{cl}}(p)^{\top} M(p)+(\star)^{\top}+\partial M(p, v) & M(p) B_{\mathrm{cl}}(p) \\
\star & -\gamma I
\end{array}\right]\left[\begin{array}{cc}
M(p)^{-1} & 0 \\
0 & I
\end{array}\right] \preceq 0, \tag{17a}\\
(\star)^{\top}\left[\begin{array}{cc}
M(p) & C_{\mathrm{cl}}(p)^{\top} \\
\star & \gamma I
\end{array}\right]\left[\begin{array}{cc}
M(p)^{-1} & 0 \\
0 & I
\end{array}\right] \preceq 0, \tag{17b}
\end{gather*}
$$

which gives us

$$
\left[\begin{array}{cc}
W(p) A_{\mathrm{cl}}(p)^{\top}+(\star)^{\top}-\partial W(p, v) & B_{\mathrm{cl}}(p) \tag{18}\\
\star & -\gamma I
\end{array}\right], \quad\left[\begin{array}{cc}
W(p) & W(p) C_{\mathrm{cl}}(p)^{\top} \\
\star & \gamma I
\end{array}\right] \succeq 0 .
$$

Using (9), this becomes

$$
\left[\begin{array}{cc}
\mathcal{A}_{\mathrm{cl}}(p, v)+(\star)^{\top} & \mathcal{B}_{\mathrm{cl}}(p) \tag{19}\\
\star & -\gamma I
\end{array}\right], \quad\left[\begin{array}{cc}
W(p) & \mathcal{C}_{\mathrm{cl}}(p)^{\top} \\
\star & \gamma I
\end{array}\right] \succeq 0 .
$$

$3.4 \quad \mathcal{L}_{\infty}$-gain

From [1, Corollary 2.4], the closed-loop interconnection has a bounded \mathcal{L}_{∞}-gain of γ if there exists a positive-definite matrix function M and scalars $\alpha, \beta \geq 0$ such that

$$
\left[\begin{array}{cc}
A_{\mathrm{cl}}(p)^{\top} M(p)+(\star)^{\top}+\beta M(p)+\partial M(p, v) & M(p) B_{\mathrm{cl}}(p) \tag{20}\\
\star & -\alpha I
\end{array}\right] \preceq 0, \quad\left[\begin{array}{ccc}
\beta M(p) & 0 & C_{\mathrm{cl}}(p)^{\top} \\
\star & (\gamma-\alpha) I & D_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \gamma I
\end{array}\right] \succeq 0 .
$$

Again, define $M^{-1}(p)=W(p)$, then

$$
\begin{array}{r}
(\star)^{\top}\left[\begin{array}{c}
A_{\mathrm{cl}}(p)^{\top} M(p)+(\star)^{\top}+\beta M(p)+\partial M(p, v) \\
\star
\end{array} \begin{array}{c}
M(p) B_{\mathrm{cl}}(p) \\
-\alpha I
\end{array}\right]\left[\begin{array}{cc}
M(p)^{-1} & 0 \\
0 & I
\end{array}\right] \preceq 0, \\
(\star)^{\top}\left[\begin{array}{ccc}
\beta M(p) & 0 & C_{\mathrm{cl}}(p)^{\top} \\
\star & (\gamma-\alpha) I & D_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \gamma I
\end{array}\right]\left[\begin{array}{ccc}
M(p)^{-1} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right] \preceq 0, \tag{21b}
\end{array}
$$

which gives us

$$
\left[\begin{array}{cc}
W(p) A_{\mathrm{cl}}(p)^{\top}+(\star)^{\top}+\beta W(p)-\partial W(p, v) & B_{\mathrm{cl}}(p) \tag{22}\\
\star & -\alpha I
\end{array}\right], \quad\left[\begin{array}{ccc}
\beta W(p) & 0 & W(p) C_{\mathrm{cl}}(p)^{\top} \\
\star & (\gamma-\alpha) I & D_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \gamma I
\end{array}\right] \succeq 0 .
$$

Using (9), this becomes

$$
\left[\begin{array}{cc}
\mathcal{A}_{\mathrm{cl}}(p, v)+(\star)^{\top}+\beta W(p) & \mathcal{B}_{\mathrm{cl}}(p) \tag{23}\\
\star & -\alpha I
\end{array}\right], \quad\left[\begin{array}{ccc}
\beta W(p) & 0 & \mathcal{C}_{\mathrm{cl}}(p)^{\top} \\
\star & (\gamma-\alpha) I & \mathcal{D}_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \gamma I
\end{array}\right] \succeq 0 .
$$

4 Discrete-Time

$4.1 \quad \ell_{2}$-gain

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop interconnection has a bounded ℓ_{2}-gain of γ (corresponding to $\left.(Q, S, R)=\left(\gamma I, 0,-\gamma^{-1} I\right)\right)$ if there exists a positive-definite matrix function M and matrix G such that

$$
\left[\begin{array}{ccc}
M(p+v) & A_{\mathrm{cl}}(p) G & B_{\mathrm{cl}}(p) \tag{24}\\
\star & G+(\star)^{\top}-M(p) & 0 \\
\star & \star & 0
\end{array}\right]+(\star)^{\top}\left[\begin{array}{cc}
\gamma I & 0 \\
\star & \gamma^{-1} I
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & I \\
0 & C_{\mathrm{cl}}(p) G & D_{\mathrm{cl}}(p)
\end{array}\right] \succeq 0,
$$

which is equivalent to

$$
\left[\begin{array}{ccc}
M(p+v) & A_{\mathrm{cl}}(p) G & B_{\mathrm{cl}}(p) \tag{25}\\
\star & G+(\star)^{\top}-M(p) & 0 \\
\star & \star & \gamma I
\end{array}\right]+(\star)^{\top}(\gamma I)^{-1}\left[\begin{array}{lll}
0 & C_{\mathrm{cl}}(p) G & \left.D_{\mathrm{cl}}(p)\right] \succeq 0,
\end{array}\right.
$$

and using a Schur complement to

$$
\left[\begin{array}{cccc}
M(p+v) & A_{\mathrm{cl}}(p) G & B_{\mathrm{cl}}(p) & 0 \tag{26}\\
\star & G+(\star)^{\top}-M(p) & 0 & G^{\top} C_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \gamma I & D_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \star & \gamma I
\end{array}\right] \succeq 0 .
$$

Using (3), we have that

$$
\begin{gather*}
A_{\mathrm{cl}}(p) G=A(p) G+B_{\mathrm{u}}(p) K(p) G \tag{27a}\\
C_{\mathrm{cl}}(p) W(p)=C_{\mathrm{z}}(p) G+D_{\mathrm{zu}}(p) K(p) G \tag{27b}
\end{gather*}
$$

Let us define

$$
\begin{equation*}
F(p):=K(p) G . \tag{28}
\end{equation*}
$$

Then, defining

$$
\begin{align*}
\mathcal{A}_{\mathrm{cl}}(p):= & A_{\mathrm{cl}}(p) G=A(p) G+B_{\mathrm{u}}(p) F(p), \tag{29a}\\
& \mathcal{B}_{\mathrm{cl}}(p):=B_{\mathrm{cl}}(p)=B_{\mathrm{w}}(p), \tag{29b}\\
\mathcal{C}_{\mathrm{cl}}(p):= & C_{\mathrm{cl}}(p) G=C_{\mathrm{z}}(p) G(p)+D_{\mathrm{zu}}(p) F(p), \tag{29c}\\
& \mathcal{D}_{\mathrm{cl}}(p):=D_{\mathrm{cl}}(p)=D_{\mathrm{zw}}(p), \tag{29d}
\end{align*}
$$

we have that (26) becomes

$$
\left[\begin{array}{cccc}
M(p+v) & \mathcal{A}_{\mathrm{cl}}(p) & \mathcal{B}_{\mathrm{cl}}(p) & 0 \tag{30}\\
\star & G+(\star)^{\top}-M(p) & 0 & \mathcal{C}_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \gamma I & \mathcal{D}_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \star & \gamma I
\end{array}\right] \succeq 0 .
$$

After solving the set of LMIs defined by (10) for F and W, the controller K can be recovered by computing (based on (28))

$$
\begin{equation*}
K(p)=F(p) G^{-1} . \tag{31}
\end{equation*}
$$

4.2 Passivity

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop interconnection is passive (corresponding to $(Q, S, R)=(0, I, 0)$) if there exists a positive-definite matrix function M and matrix G such that

$$
\left[\begin{array}{ccc}
M(p+v) & A_{\mathrm{cl}}(p) G & B_{\mathrm{cl}}(p) \tag{32}\\
\star & G+(\star)^{\top}-M(p) & 0 \\
\star & \star & 0
\end{array}\right]+(\star)^{\top}\left[\begin{array}{cc}
0 & I \\
\star & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & I \\
0 & C_{\mathrm{cl}}(p) G & D_{\mathrm{cl}}(p)
\end{array}\right] \succeq 0,
$$

which is equivalent to

$$
\left[\begin{array}{ccc}
M(p+v) & A_{\mathrm{cl}}(p) G & B_{\mathrm{cl}}(p) \tag{33}\\
\star & G+(\star)^{\top}-M(p) & G^{\top} C_{\mathrm{cl}}(p)^{\top} \\
\star & \star & D_{\mathrm{cl}}(p)+(\star)^{\top}
\end{array}\right] \succeq 0 .
$$

Using (29), this becomes

$$
\left[\begin{array}{ccc}
M(p+v) & \mathcal{A}_{\mathrm{cl}}(p) & \mathcal{B}_{\mathrm{cl}}(p) \tag{34}\\
\star & G+(\star)^{\top}-M(p) & \mathcal{C}_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \mathcal{D}_{\mathrm{cl}}(p)+(\star)^{\top}
\end{array}\right] \succeq 0
$$

$4.3 \quad \ell_{2}-\ell_{\infty}$-gain

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop interconnection has a bounded $\ell_{2}-\ell_{\infty}$-gain of γ (corresponding to $(Q, S, R)=(\gamma I, 0,0)$) if there exists a positive-definite matrix function M and matrix G such that

$$
\left[\begin{array}{ccc}
M(p+v) & A_{\mathrm{cl}}(p) G & B_{\mathrm{cl}}(p) \tag{35a}\\
\star & G+(\star)^{\top}-M(p) & 0 \\
\star & \star & 0
\end{array}\right]+(\star)^{\top}\left[\begin{array}{cc}
\gamma I & 0 \\
\star & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & I \\
0 & C_{\mathrm{cl}}(p) G & D_{\mathrm{cl}}(p)
\end{array}\right] \succeq 0
$$

and from $[1,(\mathrm{~A} .202)]$

$$
\left[\begin{array}{cc}
G+(\star)^{\top}-M(p) & G^{\top} C_{\mathrm{cl}}(p)^{\top} \tag{35b}\\
\star & \gamma I
\end{array}\right] \succeq 0
$$

which is equivalent to

$$
\left[\begin{array}{ccc}
M(p+v) & A_{\mathrm{cl}}(p) G & B_{\mathrm{cl}}(p) \tag{36}\\
\star & G+(\star)^{\top}-M(p) & 0 \\
\star & \star & \gamma I
\end{array}\right] \succeq 0, \quad\left[\begin{array}{cc}
G+(\star)^{\top}-M(p) & G^{\top} C_{\mathrm{cl}}(p)^{\top} \\
\star & \gamma I
\end{array}\right] \succeq 0
$$

Using (29), this becomes

$$
\left[\begin{array}{ccc}
M(p+v) & \mathcal{A}_{\mathrm{cl}}(p) & \mathcal{B}_{\mathrm{cl}}(p) \tag{37}\\
\star & G+(\star)^{\top}-M(p) & 0 \\
\star & \star & \gamma I
\end{array}\right] \succeq 0, \quad\left[\begin{array}{cc}
G+(\star)^{\top}-M(p) & \mathcal{C}_{\mathrm{cl}}(p)^{\top} \\
\star & \gamma I
\end{array}\right] \succeq 0
$$

$4.4 \quad \ell_{\infty}$-gain

Based on $[1,(A .215)]$, it holds that the closed-loop interconnection has a bounded ℓ_{∞}-gain of γ if there exists a positive-definite matrix function M and matrix G such that

$$
\left[\begin{array}{ccc}
M(p+v) & A_{\mathrm{cl}}(p) G & B_{\mathrm{cl}}(p) \tag{38a}\\
\star & (1-\beta)\left(G+(\star)^{\top}-M(p)\right) & 0 \\
\star & \star & \alpha I
\end{array}\right] \succeq 0
$$

and from $[1,(\mathrm{~A} .220)]$

$$
\left[\begin{array}{ccc}
\beta\left(G+(\star)^{\top}-M(p)\right) & 0 & G^{\top} C_{\mathrm{cl}}(p)^{\top} \tag{38b}\\
\star & (\gamma-\alpha) I & D_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \gamma I
\end{array}\right] \succeq 0
$$

Using (29), this becomes

$$
\left[\begin{array}{ccc}
M(p+v) & \mathcal{A}_{\mathrm{cl}}(p) & \mathcal{B}_{\mathrm{cl}}(p) \tag{39a}\\
\star & (1-\beta)\left(G+(\star)^{\top}-M(p)\right) & 0 \\
\star & \star & \alpha I
\end{array}\right] \succeq 0,
$$

and

$$
\left[\begin{array}{ccc}
\beta\left(G+(\star)^{\top}-M(p)\right) & 0 & \mathcal{C}_{\mathrm{cl}}(p)^{\top} \tag{39b}\\
\star & (\gamma-\alpha) I & \mathcal{D}_{\mathrm{cl}}(p)^{\top} \\
\star & \star & \gamma I
\end{array}\right] \succeq 0 .
$$

Note that the LMIs in (10), (15), (19), (23), (30), (34), (37), and (39) have the same form as the output-feedback controller synthesis LMIs in Corrolaries 2.5-2.8 in [1].

References

[1] P. J. W. Koelewijn, Analysis and Control of Nonlinear Systems with Stability and Performance Guarantees. PhD thesis, Eindhoven University of Technology, 2023.
[2] А.Г., "Derivative of the inverse of a matrix." Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1471836 (version: 2015-10-09).

