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1 Introduction

This document gives derivations of the Linear Matrix Inequalities (LMIs) that are used in order to
perform state-feedback controller synthesis in LPVcore Toolbox using the lpvsynsf command.

2 Problem

Given a generalized plant

ξx = A(p)x+Bw(p)w +Bu(p)u; (1a)

z = Cz(p)x+Dzw(p)w +Dzu(p)u; (1b)

synthesize a state-feedback controller
u = K(p)x, (2)

such that the closed-loop interconnection

ξx =

Acl(p)󰁽 󰂀󰁿 󰁾
(A(p) +Bu(p)K(p))x+

Bcl(p)󰁽 󰂀󰁿 󰁾
Bw(p)w; (3a)

z = (Cz(p) +Dzu(p)K(p))󰁿 󰁾󰁽 󰂀
Ccl(p)

x+Dzw(p)󰁿 󰁾󰁽 󰂀
Dcl(p)

w; (3b)

satisfies a specific performance metric, such as minimal L2-gain or being passive.

3 Continuous-Time

3.1 L2-gain

From [1, Corollary 2.1], the closed-loop interconnection has a bounded L2-gain of γ if there exists a
positive-definite matrix function M such that

󰀵

󰀷
Acl(p)

⊤M(p) + (󰂏)⊤ + ∂M(p, v) M(p)Bcl(p) Ccl(p)
⊤

󰂏 −γI Dcl(p)
⊤

󰂏 󰂏 −γI

󰀶

󰀸 ≼ 0. (4)

Define M−1(p) = W (p), then

(󰂏)⊤

󰀵

󰀷
Acl(p)

⊤M(p) + (󰂏)⊤ + ∂M(p, v) M(p)Bcl(p) Ccl(p)
⊤

󰂏 −γI Dcl(p)
⊤

󰂏 󰂏 −γI

󰀶

󰀸

󰀵

󰀷
M−1(p) 0 0

0 I 0
0 0 I

󰀶

󰀸 ≼ 0, (5)

which gives us 󰀵

󰀷
W (p)Acl(p)

⊤ + (󰂏)⊤ − ∂W (p, v) Bcl(p) W (p)Ccl(p)
⊤

󰂏 −γI Dcl(p)
⊤

󰂏 󰂏 −γI

󰀶

󰀸 ≼ 0. (6)
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Note that (󰂏)⊤(∂M)M−1 = −∂(M−1) = −∂W as 0 = ∂I = ∂(MM−1) = (∂M)M−1 +M(∂(M−1))
[2].

Using (3), we have that

Acl(p)W (p) = A(p)W (p) +Bu(p)K(p)W (p), (7a)

Ccl(p)W (p) = Cz(p)W (p) +Dzu(p)K(p)W (p). (7b)

Let us define
F (p) := K(p)W (p). (8)

Then, defining

Acl(p, v) := Acl(p)W (p)− 1

2
∂W (p, v) = A(p)W (p) +Bu(p)F (p)− 1

2
∂W (p, v), (9a)

Bcl(p) := Bcl(p) = Bw(p), (9b)

Ccl(p) := Ccl(p)W (p) = Cz(p)W (p) +Dzu(p)F (p), (9c)

Dcl(p) := Dcl(p) = Dzw(p), (9d)

we have that (6) becomes

󰀵

󰀷
Acl(p, v) + (󰂏)⊤ Bcl(p) Ccl(p)

⊤

󰂏 −γI Dcl(p)
⊤

󰂏 󰂏 −γI

󰀶

󰀸 ≼ 0. (10)

After solving the set of LMIs defined by (10) for F and W , the controller K can be recovered by
computing (based on (8))

K(p) = F (p)W (p)−1. (11)

3.2 Passivity

From [1, Corollary 2.2], the closed-loop interconnection is passive if there exists a positive-definite
matrix function M such that

󰀗
Acl(p)

⊤M(p) + (󰂏)⊤ + ∂M(p, v) M(p)Bcl(p)− Ccl(p)
⊤

󰂏 −Dcl(p) + (󰂏)⊤

󰀘
≼ 0. (12)

Again, define M−1(p) = W (p), then

(󰂏)⊤
󰀗
Acl(p)

⊤M(p) + (󰂏)⊤ + ∂M(p, v) M(p)Bcl(p)− Ccl(p)
⊤

󰂏 −Dcl(p) + (󰂏)⊤

󰀘 󰀗
M(p)−1 0

0 I

󰀘
≼ 0, (13)

which gives us 󰀗
W (p)Acl(p)

⊤ + (󰂏)⊤ − ∂W (p, v) Bcl(p)−W (p)Ccl(p)
⊤

󰂏 −Dcl(p) + (󰂏)⊤

󰀘
≼ 0. (14)

Using (9), this becomes 󰀗
Acl(p, v) + (󰂏)⊤ Bcl(p)− Ccl(p)

⊤

󰂏 −Dcl(p) + (󰂏)⊤

󰀘
≼ 0. (15)
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3.3 L2-L∞-gain

From [1, Corollary 2.3], the closed-loop interconnection has a bounded L2-L∞-gain of γ if there exists
a positive-definite matrix function M such that

󰀗
Acl(p)

⊤M(p) + (󰂏)⊤ + ∂M(p, v) M(p)Bcl(p)
󰂏 −γI

󰀘
≼ 0,

󰀗
M(p) Ccl(p)

⊤

󰂏 γI

󰀘
≽ 0. (16)

Again, define M−1(p) = W (p), then

(󰂏)⊤
󰀗
Acl(p)

⊤M(p) + (󰂏)⊤ + ∂M(p, v) M(p)Bcl(p)
󰂏 −γI

󰀘 󰀗
M(p)−1 0

0 I

󰀘
≼ 0, (17a)

(󰂏)⊤
󰀗
M(p) Ccl(p)

⊤

󰂏 γI

󰀘 󰀗
M(p)−1 0

0 I

󰀘
≼ 0, (17b)

which gives us

󰀗
W (p)Acl(p)

⊤ + (󰂏)⊤ − ∂W (p, v) Bcl(p)
󰂏 −γI

󰀘
,

󰀗
W (p) W (p)Ccl(p)

⊤

󰂏 γI

󰀘
≽ 0. (18)

Using (9), this becomes

󰀗
Acl(p, v) + (󰂏)⊤ Bcl(p)

󰂏 −γI

󰀘
,

󰀗
W (p) Ccl(p)

⊤

󰂏 γI

󰀘
≽ 0. (19)

3.4 L∞-gain

From [1, Corollary 2.4], the closed-loop interconnection has a bounded L∞-gain of γ if there exists a
positive-definite matrix function M and scalars α,β ≥ 0 such that

󰀗
Acl(p)

⊤M(p) + (󰂏)⊤ + βM(p) + ∂M(p, v) M(p)Bcl(p)
󰂏 −αI

󰀘
≼ 0,

󰀵

󰀷
βM(p) 0 Ccl(p)

⊤

󰂏 (γ − α)I Dcl(p)
⊤

󰂏 󰂏 γI

󰀶

󰀸 ≽ 0.

(20)
Again, define M−1(p) = W (p), then

(󰂏)⊤
󰀗
Acl(p)

⊤M(p) + (󰂏)⊤ + βM(p) + ∂M(p, v) M(p)Bcl(p)
󰂏 −αI

󰀘 󰀗
M(p)−1 0

0 I

󰀘
≼ 0, (21a)

(󰂏)⊤

󰀵

󰀷
βM(p) 0 Ccl(p)

⊤

󰂏 (γ − α)I Dcl(p)
⊤

󰂏 󰂏 γI

󰀶

󰀸

󰀵

󰀷
M(p)−1 0 0

0 I 0
0 0 I

󰀶

󰀸 ≼ 0, (21b)

which gives us

󰀗
W (p)Acl(p)

⊤ + (󰂏)⊤ + βW (p)− ∂W (p, v) Bcl(p)
󰂏 −αI

󰀘
,

󰀵

󰀷
βW (p) 0 W (p)Ccl(p)

⊤

󰂏 (γ − α)I Dcl(p)
⊤

󰂏 󰂏 γI

󰀶

󰀸 ≽ 0.

(22)
Using (9), this becomes

󰀗
Acl(p, v) + (󰂏)⊤ + βW (p) Bcl(p)

󰂏 −αI

󰀘
,

󰀵

󰀷
βW (p) 0 Ccl(p)

⊤

󰂏 (γ − α)I Dcl(p)
⊤

󰂏 󰂏 γI

󰀶

󰀸 ≽ 0. (23)
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4 Discrete-Time

4.1 ℓ2-gain

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection has a bounded ℓ2-gain of γ (corresponding to (Q,S,R) = (γI, 0,−γ−1I)) if there exists
a positive-definite matrix function M and matrix G such that

󰀵

󰀷
M(p+ v) Acl(p)G Bcl(p)

󰂏 G+ (󰂏)⊤ −M(p) 0
󰂏 󰂏 0

󰀶

󰀸+ (󰂏)⊤
󰀗
γI 0
󰂏 γ−1I

󰀘 󰀗
0 0 I
0 Ccl(p)G Dcl(p)

󰀘
≽ 0, (24)

which is equivalent to

󰀵

󰀷
M(p+ v) Acl(p)G Bcl(p)

󰂏 G+ (󰂏)⊤ −M(p) 0
󰂏 󰂏 γI

󰀶

󰀸+ (󰂏)⊤(γI)−1
󰀅
0 Ccl(p)G Dcl(p)

󰀆
≽ 0, (25)

and using a Schur complement to

󰀵

󰀹󰀹󰀷

M(p+ v) Acl(p)G Bcl(p) 0
󰂏 G+ (󰂏)⊤ −M(p) 0 G⊤Ccl(p)

⊤

󰂏 󰂏 γI Dcl(p)
⊤

󰂏 󰂏 󰂏 γI

󰀶

󰀺󰀺󰀸 ≽ 0. (26)

Using (3), we have that
Acl(p)G = A(p)G+Bu(p)K(p)G, (27a)

Ccl(p)W (p) = Cz(p)G+Dzu(p)K(p)G. (27b)

Let us define
F (p) := K(p)G. (28)

Then, defining
Acl(p) := Acl(p)G = A(p)G+Bu(p)F (p), (29a)

Bcl(p) := Bcl(p) = Bw(p), (29b)

Ccl(p) := Ccl(p)G = Cz(p)G(p) +Dzu(p)F (p), (29c)

Dcl(p) := Dcl(p) = Dzw(p), (29d)

we have that (26) becomes

󰀵

󰀹󰀹󰀷

M(p+ v) Acl(p) Bcl(p) 0
󰂏 G+ (󰂏)⊤ −M(p) 0 Ccl(p)

⊤

󰂏 󰂏 γI Dcl(p)
⊤

󰂏 󰂏 󰂏 γI

󰀶

󰀺󰀺󰀸 ≽ 0. (30)

After solving the set of LMIs defined by (10) for F and W , the controller K can be recovered by
computing (based on (28))

K(p) = F (p)G−1. (31)
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4.2 Passivity

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection is passive (corresponding to (Q,S,R) = (0, I, 0)) if there exists a positive-definite
matrix function M and matrix G such that

󰀵

󰀷
M(p+ v) Acl(p)G Bcl(p)

󰂏 G+ (󰂏)⊤ −M(p) 0
󰂏 󰂏 0

󰀶

󰀸+ (󰂏)⊤
󰀗
0 I
󰂏 0

󰀘 󰀗
0 0 I
0 Ccl(p)G Dcl(p)

󰀘
≽ 0, (32)

which is equivalent to
󰀵

󰀷
M(p+ v) Acl(p)G Bcl(p)

󰂏 G+ (󰂏)⊤ −M(p) G⊤Ccl(p)
⊤

󰂏 󰂏 Dcl(p) + (󰂏)⊤

󰀶

󰀸 ≽ 0. (33)

Using (29), this becomes
󰀵

󰀷
M(p+ v) Acl(p) Bcl(p)

󰂏 G+ (󰂏)⊤ −M(p) Ccl(p)
⊤

󰂏 󰂏 Dcl(p) + (󰂏)⊤

󰀶

󰀸 ≽ 0. (34)

4.3 ℓ2-ℓ∞-gain

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection has a bounded ℓ2-ℓ∞-gain of γ (corresponding to (Q,S,R) = (γI, 0, 0)) if there exists
a positive-definite matrix function M and matrix G such that

󰀵

󰀷
M(p+ v) Acl(p)G Bcl(p)

󰂏 G+ (󰂏)⊤ −M(p) 0
󰂏 󰂏 0

󰀶

󰀸+ (󰂏)⊤
󰀗
γI 0
󰂏 0

󰀘 󰀗
0 0 I
0 Ccl(p)G Dcl(p)

󰀘
≽ 0, (35a)

and from [1, (A.202)] 󰀗
G+ (󰂏)⊤ −M(p) G⊤Ccl(p)

⊤

󰂏 γI

󰀘
≽ 0, (35b)

which is equivalent to
󰀵

󰀷
M(p+ v) Acl(p)G Bcl(p)

󰂏 G+ (󰂏)⊤ −M(p) 0
󰂏 󰂏 γI

󰀶

󰀸 ≽ 0,

󰀗
G+ (󰂏)⊤ −M(p) G⊤Ccl(p)

⊤

󰂏 γI

󰀘
≽ 0. (36)

Using (29), this becomes
󰀵

󰀷
M(p+ v) Acl(p) Bcl(p)

󰂏 G+ (󰂏)⊤ −M(p) 0
󰂏 󰂏 γI

󰀶

󰀸 ≽ 0,

󰀗
G+ (󰂏)⊤ −M(p) Ccl(p)

⊤

󰂏 γI

󰀘
≽ 0. (37)

4.4 ℓ∞-gain

Based on [1, (A.215)], it holds that the closed-loop interconnection has a bounded ℓ∞-gain of γ if
there exists a positive-definite matrix function M and matrix G such that

󰀵

󰀷
M(p+ v) Acl(p)G Bcl(p)

󰂏 (1− β)(G+ (󰂏)⊤ −M(p)) 0
󰂏 󰂏 αI

󰀶

󰀸 ≽ 0, (38a)

and from [1, (A.220)]
󰀵

󰀷
β(G+ (󰂏)⊤ −M(p)) 0 G⊤Ccl(p)

⊤

󰂏 (γ − α)I Dcl(p)
⊤

󰂏 󰂏 γI

󰀶

󰀸 ≽ 0. (38b)
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Using (29), this becomes

󰀵

󰀷
M(p+ v) Acl(p) Bcl(p)

󰂏 (1− β)(G+ (󰂏)⊤ −M(p)) 0
󰂏 󰂏 αI

󰀶

󰀸 ≽ 0, (39a)

and 󰀵

󰀷
β(G+ (󰂏)⊤ −M(p)) 0 Ccl(p)

⊤

󰂏 (γ − α)I Dcl(p)
⊤

󰂏 󰂏 γI

󰀶

󰀸 ≽ 0. (39b)

Note that the LMIs in (10), (15), (19), (23), (30), (34), (37), and (39) have the same form as the
output-feedback controller synthesis LMIs in Corrolaries 2.5 - 2.8 in [1].
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