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1 Introduction

This document gives derivations of the Linear Matriz Inequalities (LMIs) that are used in order to
perform state-feedback controller synthesis in LPVCORE Toolbox using the 1pvsynsf command.

2 Problem

Given a generalized plant

{x = A(p)z + Bw(p)w + Bu(p)u; (la)
2= Cy(p)x + Dy (p)w + Dou(p)u; (1b)
synthesize a state-feedback controller
u=K(p)z, (2)
such that the closed-loop interconnection
Acl(p) Bcl(p)
—~ =
§x = (A(p) + Bu(p)K(p)) = + Buw(p) w; (3a)
= (Cz(p) + Dzu(p)K(p) T+ Dzw(p) w; (3b)
——
Ccl(p) Dcl(p)

satisfies a specific performance metric, such as minimal L£s-gain or being passive.

3 Continuous-Time

3.1 Ly-gain

From [1, Corollary 2.1}, the closed-loop interconnection has a bounded Lo-gain of v if there exists a
positive-definite matrix function M such that

Aa(p) "M (p) + ()T + M (p,v) M(p)Ba(p) Calp)’
* —~I Da(p)" | =0. (4)
* * —I

Define M~1(p) = W(p), then

Aa(p)"M(p) + ()T + M (p,v) M(p)Ba(p) Ca(p)'] [M~'(p) 0 0
()" * —I Da(p)" 0 I 0| =0, (5
* * —~1 0 0 I

which gives us
W(p)Aa(p)" + ()7 =W (p,v) Balp) W(p)Ca(p)"
* -yl Da(p)" | =<0 (6)
* * —~I



Note that (x)T(OM)M~! = —d(M~1) = —OW as 0 = 0I = J(MM~1) = (OM)M~! + M(d(M~1))
[2].

Using (3), we have that

Aa(p)W(p) = A(p)W (p) + Bu(p)K (p)W (p), (7a)
Ca(p)W(p) = C.(p)W (p) + Dau(p) K (p)W (p) (7b)
Let us define

F(p) == K(p)W(p) (8)

Then, defining
A4(p.v) = Aa(B)V () = 300 (p,0) = AGW ) + Bup)F @) ~ 500 (v), (%)
Ba(p) := Ba(p) = Bw(p), (9b)
Ca(p) == Ca(p)W (p) = C,(p)W (p) + Dsu(p)F (p) (9¢)
Q)cl(p) - Dcl(p) = Dzw(p)> (gd)

we have that (6) becomes

Aa(p,v) + ()" Ba(p) Calp)'
* -1 Da(p)"| 0. (10)
* * —~1

After solving the set of LMIs defined by (10) for F' and W, the controller K can be recovered by
computing (based on (8))

K(p) = F(p)W(p)~". (11)
3.2 Passivity

From [1, Corollary 2.2], the closed-loop interconnection is passive if there exists a positive-definite
matrix function M such that

[Acl(p)TM (p) + (x) " +0M(p,v) M(p)Ba(p)

- C'cl p)T
* —Da(p) + (*) 7 ] =0. (12)

Again, define M ~!(p) = W(p), then



3.3 Ly-L-gain

From [1, Corollary 2.3], the closed-loop interconnection has a bounded L2-L-gain of « if there exists
a positive-definite matrix function M such that

[Ad@)w(pw*w+aM<p,v> M<p_>f;l@>}jo, [ ) Cale }zo. (16)

Again, define M~1(p) = W(p), then

7 [Ad(p)TM (p) + *(*)T+8M (p,v) M (p_)f;l(p)] [M (g)1 ?] <0, (17a)
T -1
" [M*@) Catt) ] [MuS) g] <0, (17)
which gives us
WA+ (T =W ) Ba] WO WG]y
Using (9), this becomes
[,‘Zld(p, Ui + ()7 B_clv(z;)] | [W*(p) cclv(z;)T] - 0. (19)

3.4 L, -gain

From [1, Corollary 2.4], the closed-loop interconnection has a bounded L-gain of v if there exists a
positive-definite matrix function M and scalars «, 8 > 0 such that

.
{Ad(p)TM(p) + ()" +BM(p) +0M(p,v) M (p)B}ﬂ(p)] <0 rﬂi(p) (7_0 Y gci((?y = 0.
* @ o * * ) 1 N
! (20)
Again, define M~1(p) = W(p), then
)7 [Acl(p)TM (p) + ()7 N BM(p) +0M(p,v) M (p_)f;l(p)} [M (25)_1 ?] <0, (21a)
[/BM » 0 Calp)’ [M ()" 0 0]
STl *  (y—a) Dalp)" 0 I 0| =0, (21b)
* * ~I 0 0 I
which gives us
.
WO+ -9V =W 6) 5o AN i 1 N
* —al N N i
(22)
Using (9), this becomes
N
[l + 7 ) ), r e Q,C;j((fjf] o
* @ * * ~I



4 Discrete-Time

4.1 /(y-gain

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection has a bounded £2-gain of v (corresponding to (Q, S, R) = (vI,0, —v~ 1)) if there exists
a positive-definite matrix function M and matrix G such that

M(p +v) Aa(p)G Ba(p)
M 070 o I
{ F GO -ME) 0+ 2 e paw) =0 @
which is equivalent to
M(p + 1)) Acl p G Bcl(p)
* G+ =Mp) 0 [+ Calp)G Dalp)] =0, (25)
* * ~I
and using a Schur complement to
M(p+v) Acl$p G B (p) . 0 .
N G+ . M(p) 701 GDCCIE;()pT - 0. (26)
* * * ~I
Using (3), we have that
Aa(p)G = A(p)G + Bu(p)K (p)G, (27a)
Ca(p)W (p) = C2(p)G + Duu(p) K (p)G. (27Db)
Let us define
F(p) := K(p)G (28)
Then, defining
A(p) := Aa(p)G = A(p)G + Bu(p)F(p), (29a)
Bei(p) := Bai(p) = Bw(p), (29b)
Ca(p) = Ca(p)G = Cy(p)G(p) + Duu(p)F (p), (29¢)
@cl(p) = Dcl(p) = Dzw(p)> (29d)
we have that (26) becomes
M(p+v) A (p) Ba(p) 0 .
: G+ (%) *— M (p) $I QC)ZII((Z))T =0 (30)
* * * I

After solving the set of LMIs defined by (10) for F' and W, the controller K can be recovered by

computing (based on (28))
K(p) = F(p)G™". (31)



4.2 Passivity

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection is passive (corresponding to (@, S,R) = (0,1,0)) if there exists a positive-definite
matrix function M and matrix G such that

M(p + 1)) Acl (p)G Bcl(p)
0 65 "o R e ala] e
which is equivalent to
M(p+v) Aa(p)G Ba(p)
* G+ (X)) —=M(p) G'Calp)"T | =0 (33)
* * Da(p) + (x)"
Using (29), this becomes
M(p +v) Aa(p) Ba(p)
* G+ =Mp)  Calp)' | =0 (34)
* * Dea(p) + (%)

4.3 (ly-l -gain

Following the derivations in [1, A.3.1 - Discrete Time], it holds (see [1, (A.149)]) that the closed-loop
interconnection has a bounded /2-¢o-gain of vy (corresponding to (Q, S, R) = (v1,0,0)) if there exists
a positive-definite matrix function M and matrix G such that

M(p +v) Aa(p)G Ba(p)
! : G+ (*)1— M (p) 8 + )7 [’1] 8] [8 C’Cl((;g)G de(p) =0, (35a)
and from [1, (A.202)]
T T T
which is equivalent to
M(p+v) Aa(p)G Ba(p)
{ . Gt M) 0 ] -0, [G”F (*)T*— M(p) GTC;c}(p)T] ~0.  (36)
* * ~vI
Using (29), this becomes
M(p+v) A1 (p) Ba1(p)
[ s GrmToME) 0 ] =0, [G+ (*)Z—M(p) Cclg)T] ~0.  (37)
* * ~vI
4.4 [, -gain

Based on [1, (A.215)], it holds that the closed-loop interconnection has a bounded /n-gain of -« if
there exists a positive-definite matrix function M and matrix G such that

M(p+v) Aa(p)G Ba(p)
* (1-BGE+T=Mp) 0 | =0, (38a)
* * al
and from [1, (A.220)]
B(G+ ()T — M(p)) 0 G Calp)’
* (y=a)l  Da(p)" | =0. (38b)
* * ~vI




Using (29), this becomes

M(p+v) Aa(p) Ba(p)
* (1-B)(G+ T =Mp) 0 | =0, (39a)
* * al
and
BG+ ()" — M(p)) 0 Calp)"
* (y—a)l Da(p)"| = 0. (39b)
* * ~vI

Note that the LMIs in (10), (15), (19), (23), (30), (34), (37), and (39) have the same form as the
output-feedback controller synthesis LMIs in Corrolaries 2.5 - 2.8 in [1].
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